Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976029

RESUMO

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética
2.
Front Plant Sci ; 14: 1182105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868318

RESUMO

In this work, we studied castor-oil plant Ricinus communis as a classical system for endosperm reserve breakdown. The seeds of castor beans consist of a centrally located embryo with the two thin cotyledons surrounded by the endosperm. The endosperm functions as major storage tissue and is packed with nutritional reserves, such as oil, proteins, and starch. Upon germination, mobilization of the storage reserves requires inter-organellar interplay of plastids, mitochondria, and peroxisomes to optimize growth for the developing seedling. To understand their metabolic interactions, we performed a large-scale organellar proteomic study on castor bean endosperm. Organelles from endosperm of etiolated seedlings were isolated and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Computer-assisted deconvolution algorithms were applied to reliably assign the identified proteins to their correct subcellular localization and to determine the abundance of the different organelles in the heterogeneous protein samples. The data obtained were used to build a comprehensive metabolic model for plastids, mitochondria, and peroxisomes during storage reserve mobilization in castor bean endosperm.

3.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656187

RESUMO

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Multiômica , Proteômica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciais de Ação
4.
PLoS One ; 18(8): e0288138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603556

RESUMO

The primary function of virus proteases is the proteolytic processing of the viral polyprotein. These enzymes can also cleave host cell proteins, which is important for viral pathogenicity, modulation of cellular processes, viral replication, the defeat of antiviral responses and modulation of the immune response. It is known that COVID-19 can influence multiple tissues or organs and that infection can damage the functionality of the brain in multiple ways. After COVID-19 infections, amyloid-ß, neurogranin, tau and phosphorylated tau were detected extracellularly, implicating possible neurodegenerative processes. The present study describes the possible induction of tau aggregation by the SARS-CoV-2 3CL protease (3CLpro) possibly relevant in neuropathology. Further investigations demonstrated that tau was proteolytically cleaved by the viral protease 3CL and, consequently, generated aggregates. However, more evidence is needed to confirm that COVID-19 is able to trigger neurodegenerative diseases.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Agregados Proteicos , Proteínas tau , Humanos , Proteases 3C de Coronavírus/metabolismo , Endopeptidases , Peptídeo Hidrolases , SARS-CoV-2 , Proteínas tau/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(27): e2221595120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364116

RESUMO

The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.


Assuntos
Anti-Infecciosos , Cromatóforos , Rhizaria , Evolução Biológica , Fotossíntese/genética , Cromatóforos/metabolismo , Anti-Infecciosos/metabolismo
6.
FEBS J ; 290(20): 4864-4876, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254618

RESUMO

Alternative therapeutic options targeting urologic malignancies, such as germ cell tumours, as well as urothelial, renal and prostate carcinomas, are still urgently needed. The membrane protein CD24 represents a promising immunotherapeutical approach. The present study aimed to decipher the molecular function of CD24 in vitro and evaluate the cytotoxic capacity of a third-generation natural killer (NK) cell chimeric antigen receptor (CAR) against CD24 in urologic tumour cell lines. Up to 20 urologic tumour cell lines and several non-malignant control cells were included. XTT viability assays and annexin V/propidium iodide flow cytometry analyses were performed to measure cell viability and apoptosis rates, respectively. Co-immunoprecipitation followed by mass spectrometry analyses identified direct interaction partners of CD24. Luciferase reporter assays were used to functionally validate transactivation of CD24 expression by SOX2. N- and O-glycosylation of CD24 were evaluated by enzymatic digestion and mass spectrometry. The study demonstrates that SOX2 transactivates CD24 expression in embryonal carcinoma cells. In cells of different urological origins, CD24 interacted with proteins involved in cell adhesion, ATP binding, phosphoprotein binding and post-translational modifications, such as histone acetylation and ubiquitination. Treatment of urological tumour cells with NK-CD24-CAR cells resulted in a decreased cell viability and apoptosis induction specifically in CD24+ tumour cells. Limitations of the study include the in vitro setting, which still has to be confirmed in vivo. In conclusion, we show that CD24 is a promising novel target for immune therapeutic approaches targeting urologic malignancies.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Urogenitais , Humanos , Masculino , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Células Matadoras Naturais , Próstata , Receptores de Células Matadoras Naturais/metabolismo , Testículo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/terapia
7.
Mol Med ; 29(1): 40, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991316

RESUMO

BACKGROUND: Being the standard-of-care for four decades, cisplatin-based chemotherapy is highly efficient in treating germ cell tumors (GCT). However, often refractory patients present with a remaining (resistant) yolk-sac tumor (YST(-R)) component, resulting in poor prognosis due to lack of novel treatment options besides chemotherapy and surgery. The aim of this study was to identify novel targets for the treatment of YST by deciphering the molecular mechanisms of therapy resistance. Additionally, we screened the cytotoxic efficacy of a novel antibody-drug-conjugate targeting CLDN6 (CLDN6-ADC), as well as pharmacological inhibitors to target specifically YST. METHODS: Protein and mRNA levels of putative targets were measured by flow cytometry, immunohistochemical stainings, mass spectrometry of formalin-fixed paraffin-embedded tissues, phospho-kinase arrays, or qRT-PCR. Cell viability, apoptosis and cell cycle assays of GCT and non-cancerous cells were performed using XTT cell viability assays or Annexin V / propidium iodide flow cytometry, respectively. Druggable genomic alterations of YST(-R) tissues were identified by the TrueSight Oncology 500 assay. RESULTS: We demonstrated that treatment with a CLDN6-ADC enhanced apoptosis induction specifically in CLDN6+ GCT cells in comparison with non-cancerous controls. In a cell line-dependent manner, either an accumulation in the G2 / M cell cycle phase or a mitotic catastrophe was observed. Based on mutational and proteome profiling, this study identified drugs targeting the FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling pathways as promising approaches to target YST. Further, we identified factors relevant for MAPK signaling, translational initiation and RNA binding, extracellular matrix-related processes as well as oxidative stress and immune response to be involved in therapy resistance. CONCLUSIONS: In summary, this study offers a novel CLDN6-ADC to target GCT. Additionally, this study presents novel pharmacological inhibitors blocking FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling for the treatment of (refractory) YST patients. Finally, this study shed light on the mechanisms of therapy resistance in YST.


Assuntos
Claudinas , Tumor do Seio Endodérmico , Neoplasias Embrionárias de Células Germinativas , Humanos , Tumor do Seio Endodérmico/tratamento farmacológico , Tumor do Seio Endodérmico/patologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/patologia , Claudinas/metabolismo
8.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639156

RESUMO

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Assuntos
Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Humanos , Camundongos , Animais , Meduloblastoma/tratamento farmacológico , NF-kappa B/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteína 2 Glutamina gama-Glutamiltransferase , Qualidade de Vida , Fagocitose , Macrófagos , Inflamação/metabolismo
9.
Nat Commun ; 13(1): 4061, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831316

RESUMO

Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , MicroRNAs , RNA Longo não Codificante , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/genética , Dineínas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética
10.
Neuro Oncol ; 24(9): 1509-1523, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307743

RESUMO

BACKGROUND: Intratumoral heterogeneity is crucially involved in metastasis, resistance to therapy, and cancer relapse. Amplifications of the proto-oncogene MYC display notable heterogeneity at the single-cell level and are associated with a particularly dismal prognosis in high-risk medulloblastomas (MBs). The aim of this study was to establish the relevance of interclonal cross-talk between MYC-driven and non-MYC-driven MB cells. METHODS: We used fluorescence in situ hybridization, single-cell transcriptomics, and immunohistochemistry, in vitro isogenic cell models, non-targeted proteomics, mass spectrometry-based metabolite quantification, HUVECs tube formation assay, and orthotopic in vivo experiments to investigate interclonal cross-talk in MB. RESULTS: We found that the release of lactate dehydrogenase A (LDHA) from MYC-driven cells facilitates metastatic seeding and outgrowth, while secretion of dickkopf WNT signaling pathway inhibitor 3 from non-MYC-driven cells promotes tumor angiogenesis. This tumor-supporting interaction between both subclones was abrogated by targeting the secretome through pharmacological and genetic inhibition of LDHA, which significantly suppressed tumor cell migration. CONCLUSION: Our study reveals the functional relevance of clonal diversity and highlights the therapeutic potential of targeting the secretome to interrupt interclonal communication and progression in high-risk MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/patologia , Humanos , Hibridização in Situ Fluorescente , Meduloblastoma/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Mol Oncol ; 16(4): 982-1008, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293822

RESUMO

Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.


Assuntos
Carcinoma Embrionário , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Antígeno CD24 , Carcinoma Embrionário/genética , Carcinoma Embrionário/patologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Microambiente Tumoral
12.
Cell Death Dis ; 12(10): 885, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584066

RESUMO

Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.


Assuntos
Glioblastoma/genética , Glioblastoma/radioterapia , MicroRNAs/metabolismo , Tolerância a Radiação/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Clonais , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Camundongos Nus , MicroRNAs/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Fenótipo , Prognóstico , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Proteogenômica , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Sci Rep ; 11(1): 13863, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226595

RESUMO

The protein kinase TBK1 is a central regulator of innate immune responses and autophagy, and ablation of either function has been linked to neuroinflammatory or degenerative diseases. Autophagy is an intracellular process that recycles old or damaged proteins and organelles. In recent years, the TBK1-dependent regulation of autophagy pathways has been characterized. However, the autophagy-dependent regulation of TBK1 activity awaits further clarification. Here, we observed that TBK1 is recruited to SQSTM1/p62-containing aggregates via the selective autophagy receptor TAX1BP1. In these aggregates, TBK1 phosphorylates SQSTM1/p62 at serine 403 and thus presumably regulates the efficient engulfment and clearance of these structures. We found that TBK1 activation is strongly increased if FIP200, a component of the autophagy-inducing ULK1 complex, is not present or cannot bind to TAX1BP1. Given our collective findings, we hypothesize that FIP200 ensures the inducible activation of TBK1 at SQSTM1/p62 condensates.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fosforilação/genética , Transdução de Sinais/genética
14.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917494

RESUMO

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Circadianas Period/metabolismo , Proteólise , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Relógios Circadianos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Proteínas Circadianas Period/genética , Fosforilação
15.
FEBS J ; 288(3): 837-860, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32525608

RESUMO

Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.


Assuntos
Proteínas de Transporte/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Mapas de Interação de Proteínas , Estresse Fisiológico , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Cromatografia Líquida/métodos , Proteína do X Frágil de Retardo Mental/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
Cells ; 9(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846968

RESUMO

The stress-inducible and senescence-associated tumor suppressor SIRT4, a member of the family of mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), regulates bioenergetics and metabolism via NAD+-dependent enzymatic activities. Next to the known mitochondrial location, we found that a fraction of endogenous or ectopically expressed SIRT4, but not SIRT3, is present in the cytosol and predominantly localizes to centrosomes. Confocal spinning disk microscopy revealed that SIRT4 is found during the cell cycle dynamically at centrosomes with an intensity peak in G2 and early mitosis. Moreover, SIRT4 precipitates with microtubules and interacts with structural (α,ß-tubulin, γ-tubulin, TUBGCP2, TUBGCP3) and regulatory (HDAC6) microtubule components as detected by co-immunoprecipitation and mass spectrometric analyses of the mitotic SIRT4 interactome. Overexpression of SIRT4 resulted in a pronounced decrease of acetylated α-tubulin (K40) associated with altered microtubule dynamics in mitotic cells. SIRT4 or the N-terminally truncated variant SIRT4(ΔN28), which is unable to translocate into mitochondria, delayed mitotic progression and reduced cell proliferation. This study extends the functional roles of SIRT4 beyond mitochondrial metabolism and provides the first evidence that SIRT4 acts as a novel centrosomal/microtubule-associated protein in the regulation of cell cycle progression. Thus, stress-induced SIRT4 may exert its role as tumor suppressor through mitochondrial as well as extramitochondrial functions, the latter associated with its localization at the mitotic spindle apparatus.


Assuntos
Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Mitose/genética , Sirtuínas/metabolismo , Humanos
17.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610669

RESUMO

Primary central nervous system lymphomas (PCNSL) account for approximately 2% to 3% of all primary brain tumors. Until now, neuropathological tumor tissue analysis, most frequently gained by stereotactic biopsy, is still the diagnostic gold standard. Here, we rigorously analyzed two independent patient cohorts comprising the clinical entities PCNSL (n = 47), secondary central nervous system lymphomas (SCNSL; n = 13), multiple sclerosis (MS, n = 23), glioma (n = 10), other tumors (n = 17) and tumor-free controls (n = 21) by proteomic approaches. In total, we identified more than 1220 proteins in the cerebrospinal fluid (CSF) and validated eight candidate biomarkers by a peptide-centric approach in an independent patient cohort (n = 63). Thus, we obtained excellent diagnostic accuracy for the stratification between PCNSL, MS and glioma patients as well as tumor-free controls for three peptides originating from the three proteins VSIG4, GPNMB4 and APOC2. The combination of all three biomarker candidates resulted in diagnostic accuracy with an area under the curve (AUC) of 0.901 (PCNSL vs. MS), AUC of 0.953 (PCNSL vs. glioma) and AUC 0.850 (PCNSL vs. tumor-free control). In summary, the determination of VSIG4, GPNMB4 and APOC2 in CSF as novel biomarkers for supporting the diagnosis of PCNSL is suggested.

18.
Cell Rep ; 31(3): 107547, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320653

RESUMO

Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Autofagia , Morte Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Fosforilação , Transdução de Sinais
19.
Plant Physiol ; 182(2): 692-706, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818904

RESUMO

Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.


Assuntos
Arabidopsis/metabolismo , Cromatografia de Afinidade/métodos , Mitocôndrias , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glutamina/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fragmentos de Peptídeos/genética , Plantas Geneticamente Modificadas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Biomed Mater ; 14(3): 035014, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769335

RESUMO

INTRODUCTION: Calcific aortic valve disease (CAVD) is the most common acquired heart valve disease with complex underlying pathomechanisms that are yet not fully understood. Three-dimensional (3D) cell culture models as opposed to conventional two-dimensional (2D) techniques may reveal new aspects of CAVD and serve as a transitional platform between conventional 2D cell culture and in vivo experiments. METHODS: Here we report on fabrication and characterization of a novel 3D hydrogel derived from cell-free native aortic valves. A detailed analysis containing protein composition, rheological behavior, cytotoxic and proliferative effects as well as results of 3D cell culture experiments are presented. Moreover, this aortic valve derived hydrogel (AVdH) is compared to commercially available biological extracellular matrix (ECM) components to evaluate and classify AVdH with respect to other currently used ECM solutions, i.e. Collagen type I and Matrigel®. RESULTS: On the biochemical level, a complex composition of native proteins was detected. Using different techniques, including mass spectrometry with Gene Ontology network and enrichment analysis, different fundamental biological functions of AVdH were identified, including peptidase-, peptidase inhibitor-, growth- and binding activity. No cytotoxic effects were detected and AVdH showed positive effects on cell growth and proliferation in vitro when compared to Collagen type I and Matrigel®. CONCLUSION: These results suggest AVdH as an organotypic ECM supporting sophisticated 3D cell culture model studies, while mimicking the native environment of the aortic valve to a greater level for enhanced in vitro analyses.


Assuntos
Valva Aórtica/fisiologia , Materiais Biomiméticos , Técnicas de Cultura de Células , Hidrogéis/química , Engenharia Tecidual/métodos , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/terapia , Calcinose/terapia , Proliferação de Células , Sistema Livre de Células , Colágeno/química , Combinação de Medicamentos , Matriz Extracelular/química , Doenças das Valvas Cardíacas/terapia , Cinética , Laminina/química , Proteoglicanas/química , Reologia , Ovinos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...